博客
关于我
压缩感知字典训练
阅读量:212 次
发布时间:2019-02-28

本文共 594 字,大约阅读时间需要 1 分钟。

训练自适应字典的函数

本函数旨在通过K-SVD算法训练自适应字典,适用于多种信号处理任务。以下是函数的主要参数和工作流程说明。

参数设置说明

  • L:参数L设定为3,表示每个线性组合中的元素数量。
  • K:参数K设定为n,表示最终生成的字典元素数量。
  • numIteration:参数numIteration设定为6,表示执行K-SVD算法的迭代次数。
  • errorFlag:参数errorFlag设定为0,表示不需要在错误达到一定值时停止算法。
  • preserveDCAtom:保留DC原子,设定为0表示不保留。
  • InitializationMethod:初始化方法选用了'DataElements',以便基于数据元素进行初始化。
  • displayProgress:参数displayProgress设定为1,表示在训练过程中显示进度信息。

训练过程说明函数开始时会输出训练提示信息,随后调用KSVD算法进行字典训练。KSVD算法能够有效地在不同信号中提取共享字典元素,确保词典的稀疏性和有效性。函数返回训练完成后的字典及其相关输出结果。

整个训练过程采用了迭代优化策略,通过多次重复KSVD算法,逐步完善词典的性能。训练结果将在Dictionary变量中保存,输出结果则包含详细的训练日志和性能指标。

训练完成后,用户可根据实际需求调整参数设置,例如增加迭代次数或修改初始条件,以获得更优的训练效果。

转载地址:http://kdcp.baihongyu.com/

你可能感兴趣的文章
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
Net与Flex入门
查看>>
net包之IPConn
查看>>
NFinal学习笔记 02—NFinalBuild
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>